Testing for White Noise under Unknown Dependence and Its Applications to Goodness-of-fit for Time Series Models
نویسنده
چکیده
Testing for white noise has been well studied in the literature of econometrics and statistics. For most of the proposed test statistics, such as the well-known Box-Pierce’s test statistic with fixed lag truncation number, the asymptotic null distributions are obtained under independent and identically distributed assumptions and may not be valid for the dependent white noise. Due to recent popularity of conditional heteroscedastic models (e.g. GARCH models), which imply nonlinear dependence with zero autocorrelation, there is a need to understand the asymptotic properties of the existing test statistics under unknown dependence. In this paper, we showed that the asymptotic null distribution of Box-Pierce’s test statistic with general weights still holds under unknown weak dependence so long as the lag truncation number grows at an appropriate rate with increasing sample size. Further applications to diagnostic checking of the ARMA and FARIMA models with dependent white noise errors are also addressed. Our results go beyond earlier ones by allowing non-Gaussian and conditional heteroscedastic errors in the ARMA and FARIMA models and provide theoretical support for some empirical findings reported in the literature.
منابع مشابه
Testing for White Noise under Unknown Dependence and Its Applications to Diagnostic Checking for Time Series Models
Testing for white noise has been well studied in the literature of econometrics and statistics. For most of the proposed test statistics, such as the well-known Box–Pierce test statistic with fixed lag truncation number, the asymptotic null distributions are obtained under independent and identically distributed assumptions and may not be valid for dependent white noise. Because of recent popul...
متن کاملThe evaluation of Cox and Weibull proportional hazards models and their applications to identify factors influencing survival time in acute leukem
Introduction: The most important models used in analysis of survival data is proportional hazards models. Applying this model requires establishment of the relevance proportional hazards assumption, otherwise it world lead to incorrect inference. This study aims to evaluate Cox and Weibull models which are used in identification of effective factors on survival time in acute leukemia. Me...
متن کاملRainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملPervasive white and colored noise removing from magnetotelluric time series
Magnetotellurics is an exploration method which is based on measurement of natural electric and magnetic fields of the Earth and is increasingly used in geological applications, petroleum industry, geothermal sources detection and crust and lithosphere studies. In this work, discrete wavelet transform of magnetotelluric signals was performed. Discrete wavelet transform decomposes signals into c...
متن کاملPower Divergence Family of Tests for Categorical Time Series Models
A fundamental issue that arises after fitting a regression model is that of testing the goodness of the fit. Our work brings together the power divergence family of goodness of fit tests and regression models for categorical time series. We show that under some reasonable assumptions, the asymptotic distribution of the power divergence family of goodness of fit tests converges to a normal rando...
متن کامل